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1. Introduction

In this paper we shall consider a multi-item inventory problem with
unspecified single-item unit costs. Rather than examining a single cost
function, we shall deal with an approach which incorporates aggregaée
objectives and constraints. The objectives are low investment, low total
costs and high aervico-lcQol. The constraints are storgge room capacity
and available workload for handling the orders. These capacities might be
increased or decreased in certain fixed quantities; such changes in workload
and storage room incur costs which are independent of whether or not these
capacities are used to their full extent. The objectives are conflicting
and 1in nnﬁy real world problems thers seems to be no single cost function
for ditcriining an optimal decision. This is due to the fact that there is
no decision unity; instead, there are different departments, differemt
sansgers and differing interests involved. How much the conpan§ should
invest in inventory and what service level should be required cannot be
determined simply by evaluating a.liuglc cost function, but is rather a
result of intensive discussions. What operations research can offer is a
description of the reiationship between investment and service-level; i.e.,
for a certain investment we are able to maximize the service-level under.
the constraints of storage room and workload. Furthermore we might study
the effect upon an alteration of the constraints. This enables the
management to find an "appropriate" decision weighing the different interests
ascertaining that there is no solution with lower total costs and higher
sexrvice~level.

Despite the enormous number of papers on inventory models there are

only a few articles concerning this important problem. Most papers start
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by assuming that marginal holding, shortage and ordering costs are givem.
But marginal ordering costs are difficult to measure. Most suggested
spproaches for determining ordering costs in the accounting literature
result in average rather than marginal costs [15]. In practice there is
uluilly a certain workload available which might be increased in fixed
quantities. Assigning average order costs therefore does not solve this
particular inventory problem. Holding costs should be composed not only
of the cost for capital but also of marginal costs taking into considera-
tion a storage room restriction. The use of shortage costs in inventory
theory has not been adopted by most practitioners (2] since there is no
basis for thci;inea-urenant in lﬁcounfing sethodology [15).

Only a few authors deal with an aggregate inventory problem as described
above.

Starr and Miller [13] have considered an "optimsl policy curve" for
deterministic demand. Schrady and Choe [lll‘connidorod a continuous review
inventory system with constraints. ‘Gcrdncr and Dannenbring (3] cxicndcd
Starr's and Hillef'l approach by eonlidcting.a continuous review stochastic
model. They presented a method that avoids cost measurement problems and
incorporates aggregate objectives and constraints. They describe a
procodufo for obtaining an optimal policy surface, the axes of which are
measured in aggregate terms: the percentage of inventory ahqrtagis. as a
measure of customer service; the workload in terms of the number of annual
stock replenishment orders; and totll_invcstnnnt. the sum of cycle and
safety stocks. Aggregate inventory decisions are defined as the s‘lection
of a cﬁnbination of the three variasbles. This -odcllobviously reflects
the true decision problem in practice much better than a single-item cost

model. In fact data simulation is frequently employed in practice to

solve decision problems described above.
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Unfortunately the underlying inventory model, considered by Garéner
and Dannenbring, has some disadvantages which makes it inapplicable in many
situations. Most of the inventory systems installed in practice have
periodic review and not continuous review [5]. It has been shown that,
given a certain inventory policy, the service-level turns out to be very
different in a périodic and in a continuous review system [9]. Further-
more we should be aware that there are different definitions of service-
levels [10], which result in very different ordering policies.

In the present paper a similar approach to that of Gardner and
Dannenbring is used; But thefe are some essential differences. First, a
periodic review multi-item inventory model I8 considered. Second, we
copoidcr only two objectives, investment and service-level, subject to
workload and sf&rage room restrictions. It seems to be more reaiistic to
begin with a given workload and storage room, which can be expdndéd in fixed
quantities, rather than to assume that workload and storage room are
continuous variables. FPurthermore an overall cost evnluati&n is considered
'1nc1uﬁing costs of luvestment, storage room and workload.

An interactive algorithm {s presented which allows Che‘aelection of a
conbinati&g of sexrvice-level, investment, workload and storage room which
is "“appropriate” for the management. This method produces combinations
vwhich lie on an optimal surface.

Since in our method there are some approximations involved, we shall

prove the validity of the approximation formulas by means of a Monte Carlo

study in the final section. Accession For
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2. The Model

Consider an inventory model with n items. The stock of every item is
inspected at the beginning of a review period aﬁd an order is placed for
those items for which the stock level has fallen to the reorder point.
After a known lead time A the orders will arrive. The demand of an item in
different periods is a random variable with known distribution. Let us

define for iten'k, k=l,2,35¢.0,0.

inventory om hand,plul on order at the beginning of period t, before

e

an order is placed.

order which is placed at the baginning of period t

]
]

stochastic demand in period t. The demand in successive periods is a
sequence of independent and identically distribuged random variables

with cdf Fk(r). mean uk and variance 0:.

P - price of item k.

Furthermore, it is assumed that diunnd wvhich cennot be immediately
satisfied is backordered. We discuss a stationary inventory model and thus
1t is sufficient to consider a single period inventory model . where the
distribution of xkt is the stationary distribution Y(x) (6]. We will also

assume that a service level Y , wvhich is defined as

cumulative backorders per period
average demand per period

Y-]_-

is an appropriate measure of customer service for product k=l,...,n.
Notice that this definition of a service level is equivalent to assigning
shortage costs which attjdcpcnd-nt on the amount of items short and the

length of time the shortage lasts. A formal proof is given in [9]. This
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type of shortage cost is considered by most authors [4], [11], [14].
In what follows we consider two objectives:

0,: minimize the total investment as the sum of cycle and safety stock

02: maximize the gservice level Y and two constraints

and two constraints

- —— — — .

clz the number of stock replenishment orders is restricted by the workload

capaclity
cz: there is a storage room capacity restrictiom

This two-objective-decision problem is solved by determining the optimal
policy surface. For every point on the surface it holds that none of the
objectives can be'inprovo& without dilinilhins the other. Before ptoéeeding i
we shall make some remarks concerning the objectivcs and constraints. The
objectiVes reflect of course cost considerations and the constraints are
associated with costs vhich become relevant if alterations of the conmstraints
are allowed. w1th'01 we only control the varisble holding costs induced by
invested capital. If the storage room is fixed the costs for holding this
room are fixpd too and thus irrelevant for a dccilion. But often it is the
case that storage room is rented in certain quantities and hence the costs
for holding a storage capacity becomes relevant for a d.ciiiou. The same
is true for the workload restriction. We therefore consider a second set
of objectives without constraints.
°4’ -1ninizc cptgl costs involving cost for workload, cost for invested

capital, and cost for holding a storage room.

osa maxinize service lavel Yy

Both sets of objectives should be available for a decision process for

selecting an "appropriate” solutiom.
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We shall now formally define our objectives and constraints. It is well
known that when given a single item inventory model of the type deascribed
above an (s,S) policy is optimal [6]. We will thus consider ('k'sk)

policies in our approach. Let

Eukl'k’sk] - eprect:‘ed inventory at the end of a period for ptgduct k
‘[le"k'sk] - expected .order quantity for product k

x[nokl_-k._sk] - expected @cr of orders per inr:l.od for product k
B[CII{.R.Sk}] - expected invested capital in inventory ' !
z[uol{ok.sk}] - expected number of orders p;: period I

E[SRI{tk.Sk}] - expected storage room |

Note that
n .
x(cxl{-k.skll - k):lrksuklsk.skl

KSR (a5, 0] = ] o 2L le,.8,]
k=l

where a, is the un:l.titongo Toom !6: product k. We finally formulate

the t\iq-dbj ective-decision problem as

min  E(SI|{s,,5,}] ' a)
{s,8,
max  Ely({s,,8. D)) @
0.5, k*°K
subject to
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![SRI{sk.sk}] < Storage room capacity (SRR) ' 3
![Nbl{sk.sk}] £ Workload capacity (WLR) (4)
- Considering a single item the expected values can be derived by [9].
. ' D,
(g [ L' (8, ~mtex S i
- B(L, [(s,,5,)] = (5) !
L 1(8s 8y 1))
1
B[NOkl(sk,Sk)] - m-(—D;T (6)

L7(s)+ g L (Sk-x)m(x)dx

B[Y(ak- k)] -]l - €))

() 1~

vhere (see [9]) M(°) and m(*) are solutions of the renewal equations
M(z) = F(2)+ ({zu(z-t)d!k(t) n(z) = f(z)-u- {:-(z-:)fk(:)ac

and L* and L~ are defined by

X
'@ = ] (e-metlae

0
L (-0 et x20
. L-(x) - ] .
f"(t-x)f:"'l(e)dc x<0
o
P where fx+1(t) is the pdf of demand in lead time plus review time. Note

k
that Dk = Skfsk. :Although an exact solution, i.e. the determination of the

i
P20 U N 38 2

optimal - policy surface, is in principle possible, we will not recommend

- it since the approximation, provided below, will give such excellent
results that there is no incentive to carry out the extraordinary high
computations. Our approximation is based on empirical results [14] that

there is only little loss of optimality if the optimization is separated
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in determining first Dk - Sk-lk and afcgnmrda 8- Furthermore, we consider
the exp.cna values under the realistic assumption that Dk is l.arge and we

~ are thus able to simplify the expressions (5) to (7), an approach which was
introduced by Roberts [8 ]. Following these principles we derive the
simplified expectéd ﬁalu?l |

| D
B(L, | (3,051 = °k‘1°*‘65 M 8y = AL . (®)
n[nokl(sk.s;)] S S 9
kHr’ “M
) f ‘(t-sk)zftﬂ'(tldt -

(8, »8,) =1~ % x (10)

2(D,+ uyy /20

2, 2

uk + Gk

vhere Qk - Dk + 3 .

Wy

The expression (8) is derived in the appendix; (2) is a well-known limiting
theorem of the renewal function M(D) {12] and (10) was derived in [9].
Since the constraint (4) will always be active we can solve this

optimization problem using the Lagrange method. Let

" a n
L(Qge-e+1Qye0) = uzlrkz[lquk] + o[kzlzlnoklokl - VLR] an

A etraighcforwérd application of the Lagrange method yields

k‘l.oc-.n (12)
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and

(13)

'l

The reorder points s, can now be calculated in a second step for various
service levels Y. We determine 8, by equation (10).

The cycle plus safety stock for product k and fixed service-level is

then
Dy
E[Iklak,nk] - Dk(1-0.5<5-) + 8- O AW (1Y) (14)
k .

and thus the total investment is

B(CI|Y] = ZRLE(L, |(s,.S,)]

and the expected total storage room is
: ' E(SR|Y] = Za B(1 |(s,.5,)]
yhich are both functions of the service level Y. The latter value is now

compared with the storage room capacity. The service level can be increased

as long as the storage room constraint is not active. We obtain a diagram

which shows the investment versus service-level y; this diagram will end at

Y' which marks the maximum service-level at which the storage room conscfaint

becomes active. In addition a diagram which gives the total costs (for

investment plus fixed costs for the storage room capacity plus fixed costs

for the workload capacity) versus service-level can be prgsented (see

figures 2 and 3). In contrast to the unit single item costs these fixed costs
are easy to determine. These diagrams are the basics for selecting an
"appropriate" service-level and investment by the management. The steps for

obtaining the diagrams are summarized in the following algorithm.
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Figure 1: Algorithm

minimize capital invested in

inventory subject to workload
restriction (determination of
Dk’ and cycle stock)

|

maximize service level subject
to storage room restrigtion
(determination of reorder points
8 and safety stock)

!

output: diagram a) service-level
vs investment
(b) sexrvice-level vs :
total costs '

|selection of new storage room caggcitj '

no
selection of new workload restriction

4 no

End
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Example

In this subsection we shall consider an cxanplle with only 100 items
to describe the algorithm. In practice the service-level of items varies
from product to ptodtict. Some products, for example, are more vital than
others. Usualiy. however, one is able to classify the items and put them
into certain groups which have the same service-level requirements.

We thus define m groups such that

Yj = gJY. §=1,2,3,...,m

let n 5 be the number of products in subgroup j then

1 B 1 ® .z
Y*2a kzlyk 2 lenjzj- Y
which yields to the restriction .
% jlg]_‘ nygy =1 | : (15)
Furthermore
Y 5 1/uiax {gj} - ) (16)

3
The problem of assigning Y is thus reduced to determining m numbers g j

which fulfill (15) and (16). This will usually be possible in a reasonable
way. .

We shail now consider a situation in which the management has to
decide how much to iuvest during the year to come and what service-level
should be required. There is ; certain workload available which allows
22 orders per week. The cost of this workload is $115,000 per year. Free
handling capacity cannot be used for other purposes. An increase or
decrease of workload is only possible in quantities which are equivalent
to 4 ordéra per week. The cost for such a workload quantum is $15,000
per year. There is also storage room available which allows for the

storage of 60,000 units. The cost for renting the storage room is

-
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$130,000 per year. Increase or decrease is only possible in quantities of
10,000 units whicht will cause costs of $20,000 per yesr. The following data

are assumed to be known

sean demand: W 20+9.89(k-1) k =1,2,...,100
' . ' 2 22 -
variance: ok f uk k=1,2,...,100

c = 0.2, 0.4, 0.6, 0.8, 1.2, 1.6

unit storage room
of product k: is randomly chosen to be in the interval (0.5,1.5]

lead time: is randomly chosen to be {2,3,4,5,6,7,8}
price: P " SOO/uk k=1,2,...,100

lcrvicq level: 5 groups of 20 products with the service levels 0.8y,
" 0.9Y, ¥, 1.1y, 1.2y

We assume & 102 interest for the invested capital. The'algorithm is demon- |
strated for ¢ = 0.2. The mansgement assigns an interval for the service-
level 60T < ¥ < 100Z. According to ghc algorithm the following diagram is
plotted. Due to the workload restriction for handling and the Qtorgge room
restriction the maximum average service level is 79.5%.'thﬁs'the diagran‘

ends at that point.
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The total costs are presented in the next diagram. The total costs are

the sum of the costs for storage room, workload and invested capital.




Figure 3: Service-level versus total costs

Total Costs
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‘Service Level _
We assume that the uanagement likes to study the effect of an alteration

of the restricfioni on investment and service~level. First theiworkload
restriction is incfeased (II) and decreased (III) by 4 orders. Again the

invested capital versus service-level is plo;ted for the three_possibili:ies.
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Figure 4: The effect of an alteration of the workload
restriction. I) initial situation, II) increase,
II1) decrease of workload restrictionm.

Investment

Service level

We see that a reduction of workload (curve 1I11) results in a lower available
service-level while an increase allows a higher service-level than 79.5%.
This is caused by a change of the cycle stock, which decreases (curve III)
or incfeascs (curve Il) the available storage room for safety stock.

Diagram 5 giveé the total costs for the alternatives.
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Pigure 5: Service-level versus total costs for different
' workload restrictions.

Total Costs

[* L %
Service lavel

Ve notice that service-levels lowar than 70% can be reached by a lower
workload than available at the beginning and thus by lower total costs.
The oppogice holds if a higher sexrvice-level than 79.5% 1s desired. Such
ocrvicc-lcvﬁls can only be reached with higher total costs.

Secondly, the storage room capacity is altered. For the initial
situation, i.e. a workload which allows 22 orders, we increased and
decressed the storage room by 10,000 units. We obtain the invested

capital versus service-level as shown in figure 6.
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Service-level versus investment for different storage
room restrictions

Figure 6:

§606 o108 1038

8574, W34, 88¢ . 60
)

Investment
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T 083 T ade T ede (X I BRAEE DEMAE TRRAY Ta
Service Level

Since the workload restriction is fixed, the cycle stock is constant and

only the safety stock increases, which results in a curve ending at a

service-level of 82.5%.

Pigure 7 gives the total costs of the three alternatives.
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Figure 7: Service-level versus total costs I) initial situation
II) increase, I1I) decrease of storage room restriction

Total Costs

ey o BORIL VAL G002, 3430 38930 25480 24903, 38340 34201 313

Table 1: Maximal service-level and total costs for various

e

. (X TR

Service Leval

I1

[X

costs of these serviéc levels are presented in Table 1.

Altogether we have 9 alternatives; the maximum service-levels and total

combinations of storage room and workload capacity

Stozage Room
Capacicy )
50,000 60,000 70,000

Worklosd : i .
Capacicy Max. Serv. Total Costs | Max. Sexrv. Total Costs | Max. Serv. Total Coete

18 60% 216 69.35% 237 76.5% 258

22 73.5%2 230 719.5% 31 82.5% ar2

26 79.5% ) 02.5% 266 [ 2} ] 206

-,
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The four minimal cost combinations are presented in Table 2; figure 8 gives

1 the minimal total costs versus service-level. Table 2 shows that for our
exanmple a maximum service-level of 73.5% can be reached by the combination
K of workload (22) and storage room (50,000). A service-level of 79.2% can

‘ ) be reached by increasing the workload capacity to (26). If a higher .

service-level than 79.5% is tequired we increase the storage room capacity.

Table 2: Optimal Combinations of Workload

i and Storage Room
Maximal Obtainable
Service-Level Workload _Storage Room
| -73.5% 22 50,000
' ~79.5% 26 50,000
. ' -82.52 26 60,000
-83% 26 70,000

The total costs can be obtained from figure 8.

Figure 8: Service-level versus Total Costs
; of Optimal Combinations

Total Costs
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The management now has all the necessary information to decide what

service-level and corresponding investment should be selected, and whether

or not the workload and the storage room restrictiong should be altered.

We notice that with the selection of a certain point on one.of the

curves presented above we determined the optimal inventory policy as well,

i.e. the set {sk.sk}.

3. Validation of the Model by Monte Carlo Simulation

The purpose of the simulation provided in this section is twofold.

First, we want to use the simulation results to test the accuracy of the

approximation formulas derived in section 2.. Second, we investigate the

varisnce of the various measures of system performance such as handling

used, inventory on and. invested capital over the periods. Since the

restrictions are met'by expected values, we have to be careful that the

variance is not too large.

We have performéd 6 simulations for different demand structurés. i.e,
c= 0.2, 0.4, 0.-6, 0;8_, 1.2, 1.6. For €< 0.5 a normal distribution was
used; otherwise the gamma distribution was f;und to be aﬁpropriate [9jl.
Notice that for increasing c the demand becomes very crtatic.. The
simulations were run for workload WL = 22 and.scrvice level Y = 0.82. The

theoretic results for inventory on hand and invested capital are given

in Table 3.
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Table 3:

Theoretical results (y = 0.82 required) for mean storage room
and invested capital.

Expected Expected Invested Capital
c=afu Storage Room In Inventory
Used In §
0.2 67.312 68,855
0.4 86,185 87,167
0.6. 120,282 120,445
0.8 162,687 163,212
1.2 279,741 283,268
1.6 440,667 T 451,172

Table 4 gives the simulation results with 1000 periods and 50 repetitions.

'rab'ie 4:

Simulation results for mean storage room,
mean invested capital, mean handling and
mean service-level.

Storage Room Used

Handling

¢c=oa/u
Mesn Std [ 4 Mean Scd a
0.2 68,322 60 +1.3 22 0.00 +0.1
0.4 86,761 47 +40.6 22 0.01 +0.1
0.6 122,373 61 4.7 2.8 0.01 0.7
0.8 166,104 187 +2.1 21.9 0.02 ~0.6
1.2 286,738 26 +2.5 21.6 0.01 1.9
1.6 445,002 261 41.0 22 0.001 ~0.2
Iavested Capital
Service-Level
Mean Sed Mesn Mean = Yy
0.2 69,938 1 4.6 823 o
0.4 87,830 4 0.8 82t 0
0.6 122,858 83 +2.0 82.5¢ 0.5
0.8 167,129 115 «2.4 (133 2
1.2 209,783 183 +2.3 03.5% 1.5
1.6 452,373 222 +0.2 (134 .

A% {s percentage of deviation from theoretic value
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The mclh values of inventory and invested capital are about 2% higher than

the expected values.

demand, vhile for sporadic

to be lower than the constraint.

The mean workload meets the constraint for normal

demand ¢ > 0.5 the actual mean workload tends

The service~level Y is as expected if the

demand is normal. For sporadic demand the actual service-level is higher

than the theoretical value.

Tables 5 and 6 give the service-levels in

the 5 groups for ¢ = 0.2 and ¢ = 1.6, respectively.

Table 5: Service~level Yy for ¢ = 0.2
Group N Required Yy Mean of Simulation ?Z

1 65.6 ~ 65.8

2 73.8 " 138

3 82.0 82.0

4 90.2 90.2

L] 98.4 98.4

Table §6: Service-level vy for ¢ = 1.6

Group N Required YZ Mean of Simulation YZ.
1 65.6 . 73.4
2 73.8 80.4
3 82.0 86.8
4 90.2 92.9
5 98.4 98.7

The expected value as a measure of performance might not be satisfactory

alone.
in other periods above.

acceptable.

actual inventory on hand,invested capital and handling in a single

period.

In some periods the actual values fall below the restrictions;
But if the variance is not too high this is

We therefore will present the standard deviation of the

A LRGP P X P X L A.Z{‘;ﬁ{iﬂ?if.}‘&‘i
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X We would expect that as demand becomes more erratic the fluctuation
Y of the mentioned variables increases and thus results in a higher
: standard deviation. But as we see from Table 7, while the standard

'.\__.'.f .
-;'.5 . deviation of demand increases from 0.2y to 1.6y, the standard deviation

1523 ° -
\‘ ) of the inventory on hand in a single period increases only from 0.1 X

. - inventory on hand to 0.75 % inventory on hand.
2

ol .

..\‘

Eat Table 7: The effect of demand structure on the performance of storage

“q room and invested capital.
; ‘
\5 Storage Room Used

::1 in 1000 Units . Invested Capital Workload

9 \; - . A .

c = 0/4W Mean Std Std/Mean Mean Std Std/Mean Mean Std Std/Mean
T

;}. 0.2 68 7 " 0.1 70 6 0.08 22 4.0 0.18
:{: . 0.4 87 8 ~ 0.09 88 7 0.08 22 4.0 0.18
W 0.6 122 11 0.09 123 10 0.08 22 4.1 0.19
N ) 0.8 166 17 0.1 167 15 0.09 22 4.1 0.19
.,' 1.2 287 43 0.15 290 39 0.13 22 4.3 0.2
i 1.6 445 64 0.15 452 57 . 0.3 .22 4.4 0.2
£

2

SR

f. To obtain a more precise picture of the actual performance of the inventory
v‘,“ N
0 X system under consideration we studied the frequencies of inventory and
:"\ handling. Table 8 gives the frequency of inventory on hand in a single
h
j;-‘ : period measured in terms of deviation from the theoretical expected value.
N
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g.g Table 8: Frequency of inventory on hand

Be 39 :

IJI‘\"II ’

o/u 802 902 100Z 110% 1202 130T 140% 1502

i 0.2 0.04 0.21 0.39 0.28 0.07 0.01 O 0
0.4 0.04 0.23 0.42 0.26 0.05 0 0 0
jf; 0.6 0.02 0.18 0.47 0.29 0.04 O 0 0
1
1¥ 0.8 0.07 0.14 0.5 0.31 0.03 0.0 0 0
‘ .
% 1.2 0.003 0.14 0.62 0.27 0.006 0.002 0.002 0.01
e 1.6 0.001 0.18 0:71 0.09 0,004 0.002 0.002 0.01
% |
s ‘ . .
er - . _ I
3= R . . -~ .
Ao .
Q’ The conclusions we draw from Table 8 are not what we expected. For
ffﬁ ¢ = 0.2, normal demand, in 39% of the periods the actual inventory is as
’§3 predictéd (100% of expected value). In 21% of the periods the inventory
o is 10X below the expected value, while in 28% of the periods the inventory
)
ii is 10% above the expected value. As the variance of the demand increases,
§s§‘ the concentration around the expected values becomes stronger. For c = 1.6,
:3E vhich is a very erratic demand, for 71% of the periods the actual inventory
I . ’ . ’ :
f; is as predicted. We notice that the modal value of the simulation corre-
e _
é; sponds with the theoretical expected value. The distribution of the
inventory turns out to be skewed to the right. When demand becomes erratic

it happens that in a very small number of cases the actual i@ventory is

50% above the expected value. The outliers cause the increasing variance.

Table 9 gives the frequencies of the orders per period. These

frequencies are almost independent of demand structure given by the value

C.
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Table 9: Frequencies of orders per period

cec/u 60T 708  80% 902 1008 110% 1208 1302 140% 150%

0.2 0.02 0.06 0.12 0.17 0.28 0.16 0.11 0.05 0.02 0.01
0.4 0.02 0.06 0.12 0.16 0.28 0.15 0.11 0.06 0.03 0.01
0.6 0.03 0.06 0.12 0.17 0.28 0.15 0.10 0.05 0.03 0.01
0.8 0.03 0.06 0.12 0.17 0.28 0.15 0.10 0.05 0.03 0.01
1.2 0.03- 0.06 0.12 0.17 0.28 0.15 0.10 0.05 0.03 0.01
1.6 0.03 0.06 0.11- 0.16 0.28 0.16 0.11 0.06 0.02 0.01

~a high number of otdegs arrives. If demand is sporadic there is no

Cumula- ,
tive 0.03 0.09 0.20 0.36 0.64 6:80 0.91 0.97 0.99 1.00

The reason for the unexpected result, namely that fluctuation decreases as
demand variation increases, 1s due to the cotrelatién of the investigated
variables. The following figutca'chaw the autocorrelation function of
inventory and the number of orders for ¢ = 0.2 and ¢ = 1.6 respectively.
We see that for normal demand we obtain cycles of high inventory and a
high nuwber of orders. This is due to the £e1attve1y high decerpiniscic

part of narmal demand. It is obvious that during every 4th and 5th period

significant correlation between the number of orders in different periods.
The inventory is highly autocorrelated as one would expect for sporadic
demand since there is no demand in most periods. But we also notice that
no cycles appear if demand is sporadic.

Ve might conclude from our simulation study that the performance of the
inventory system was close to that predicted by the theoretical model.

The nodnl values are the same as the expected values of the model. But

since the distribution of the variables under consideration tend to be




skewed to the right the average of actual inventory and invested capital
is 2% higher than the expected éclue. The service-levels ;te as
required. The variation of the variables are higher when demand has a .
high d.:otniniatic.part. 1.e. ¢ < 0.5. Invthis case we notice the
appearance of cycles in total inventory andloideta. Iﬁ seems that there
has been very little attention given to this problem up tili now in

inventory literature.
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APPENDIX

We will show that the expected inventory on hand has the asymptotic

value
B(1[8,5] + D(L = 3) + s-y + -V as D + an

Note that we omit the index k for convenience.

Proof: Let
s ' D Dts
[(5-00000 ™ axt [ [ re-y-x)000) * u(yraxdy
31fs,5) = 2 09
: 14M(D)

(1) It is easily seen that

A+l

S =
g(s-xmx) dx +Dts =y, asD-+e

(11) Note that (see Saith [12])

@) +2 + -2 eapee
TP |
vhere "2 = uz + 02 ‘
(111) Pirst notice that
D Dis-y D D =,
[ [ (otamy-x)0x)* a(y)dxdy « | (D+s~y, . -y)n(y)dy-] [ (D+s-y-x)
0 0 - 0 0 D+s-y
x ¢(x)**la(y)axdy . a2

then the first term at the right hand side of (A2) is
B i, !

mn-u,\ﬂ)n(n)-g yu(y)dy + (Do~ ) GG i L+ DG +2:, -1
W

2 u
-1%—-+ D( -% -1) asD=+w
o 2u

The second term of (A2) is asymptotically given (see (9]) by
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[ | oremy00* niyaxty » & [0 0dx as D+ =
0 Di¢s-y ' )
But -51{; / (x-8)26(x) = (1=y)u * [144(D)] and with (1), (41) and (i1i) we obtain
) _ s

(A1).
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